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The intestinal microflora is a large bacterial community that colonizes the gut, with a metabolic activity equal to an organ and various
functions that affect the physiology and pathology of the host’s mucosal immune system. Intestinal bacteria are useful in promotion of
human health, but certain components of microflora, in genetically susceptible individuals, contribute to various pathological disorders,
including inflammatory bowel disease. Clinical and experimental observations indicate an imbalance in protective and harmful
microflora components in these disorders. Manipulation of gut flora to enhance its protective and beneficial role represents a
promising field of new therapeutic strategies of inflammatory bowel disease. In this review, we discuss the implication of gut flora in
the intestinal inflammation that justifies the role of probiotics and prebiotics in the prevention and treatment of inflammatory bowel
disease and we address the evidence for therapeutic benefits from their use in experimental models of colitis and clinical trials.

Introduction

Inflammatory bowel disease (IBD) consists of two distinct
clinical forms, ulcerative colitis (UC) and Crohn’s disease
(CD), with unknown aetiology, which nevertheless are con-
sidered to share almost identical pathophysiological back-
grounds. Current reviews summarize the factors initiating
and perpetuating IBD, from four basic viewpoints: genetics,
immune dysregulation, barrier dysfunction and role of the
microbial flora [1]. The interplay of the intestinal microbes
with the mucosal environment, in susceptible individuals,
triggers a cascade of reactions that start with the interac-
tion of microbes and their components with the intestinal
epithelial cells and dendritic cells via receptors, followed by
an interaction of antigen-presenting cells and mucosal
lymphocytes, lymphocytes and vascular endothelial cells,
and lymphocytes and granulocytes, producing inflamma-
tory mediators and leading to mucosal damage [2–5].With
this in mind, research is underway in these fields, with the
ultimate purpose of generating new therapies.

No specific microbe has been proved to cause IBD,
despite the fact that several microorganisms have been
investigated as implicating factors in the aetiopathogen-
esis of IBD. These include Mycobacterium paratuberculosis
[6], Listeria monocytogenes, Chlamydia pneumoniae [7],
Escherichia coli and other bacteria [8], and cytomegalovirus
[9], but none of the aforementioned has been linked
directly with the process. Today more attention is paid to
the dynamic balance between intestinal bacteria, particu-

larly commensal flora and host defence mechanisms at the
intestinal mucosa, and to their role in the initiation and
maintenance of intestinal inflammation [10]. There is
strong evidence that changes in the bowel bacterial flora
due to environmental or diet factors are of paramount
importance in the pathogenesis of IBD [11]. In addition, the
role of microflora in intestinal disorders is supported by
findings that probiotics can ameliorate IBD or use of anti-
biotics could benefit certain subsets of IBD patients [12,
13]. This knowledge has led to new therapeutic strategies
that target the microflora of patients with IBD using agents
such as probiotics, prebiotics and synbiotics, ranging from
simple carbohydrates to genetically engineered bacteria
with the role of secreting immunoregulatory cytokines.

The microflora: who are ‘they’?

The fetal gut is sterile, and colonization with bacteria is
sustained by contact between the child and its environ-
ment, depending on the mode of delivery [14, 15], hygiene
levels [16], medication [17] and type of feeding, as differ-
ences in gut microflora composition occur between
breast- and formula-fed infants [18, 19]. The bacterial load
of the bowel consists of ‘native’ species that permanently
colonize the intestine (fairly stabilized until the fourth year
of life) [20] and transient bacteria that are continuously
ingested from the external environment. Bacteria play a
tremendously important role in the maturation of the gut
immune system, as it has been demonstrated in animals
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bred in a germ-free environment [21–23], which exhibit
crypt hyperplasia, lack of lymphoid follicle development
and other structural changes.

Bacteriological cultures at first, and then nucleic acid-
based methods [polymerase chain reaction, 16S rRNA
probing, fluorescence in situ hybridization (FISH)] were
used to elucidate the microbial content of the intestinal
lumen. Gastric acid, bile and pancreatic secretions result in
decreased colonization of the proximal small intestine by
most bacteria, but bacterial density increases in the distal
small intestine and large bowel.The contents and faeces of
the large bowel contain about 1011-1012 bacterial cells per
gram of wet weight, whereas bacteria form about 50–60%
of the faecal mass. This luminal bacterial population com-
poses the faecal microbiota. In healthy humans, four phyla
(Bacteroeidetes, Firmicutes, Actinobacteria and Proteo-
bacteria) and three groups (Clostridium coccoides group,
C. leptum subgroup and Bacteroides-Prevotella group, all
containing many genera and species) are present in faeces
[24, 25]. There are also Fungi and Archaea, but these com-
prise a very small percentage of the total amount (0.05%
and 1%, respectively) [26, 27].

Apart from the faecal microbiota, other studies have
been implemented to clarify the identity of bacteria
present on the mucosal surface, suggesting that they rep-
resent a different population that is in direct interaction
with the intestinal cells and the mucosal immune system
of the gut. This bacterial population consists of the
mucosal microbiota [28]. The above-mentioned concern
the bacteria, and other studies were made to clarify the
bacteria present on the mucosal surface. Swidsinski et al.
used FISH with a wide selection of probes in biofilms from
biopsies from the ileum, ascending and sigmoid colon,
showing the presence of Eusobacterium rectale, C. coc-
coides, Bacteroides-Prevotella, Bacteroides fragilis and Fuso-
bacterium prausnitzii groups only, in the mucosa of controls
[29]. Mylonaki et al. identified Bifidobacterium as the pre-
dominant genus, followed by Lactobacilli and Bacteroides
in specimens from colorectal biopsies of controls [30].

It has been observed that almost as much as 50% of
bacteria traced with molecular methods could not be
cultured in the laboratory using standard techniques.
This reveals the difficulties encountered in attempting to
identify all microorganisms making up the microflora [31].
The presence of mucus, which is of great importance in
the nesting of the commensal flora, must be taken into
account in the process of identifying bacteria. As Tannock
has pointed out, DNA-based techniques ‘reveal only who
might have been there’ [20]. Furthermore, RNA-based tech-
niques detect bacteria that are metabolically active at the
time of the experiment. Therefore, the use of function-
revealing techniques such as transcriptomics and pro-
teomics is necessary in order to reveal the exact role of the
microflora. Moreover, it has been suggested that, besides
recognizing the presence of a certain species of bacteria, it
is necessary to know its exact position in the infrastructure

of the microflora, thus introducing the term ‘spatial orga-
nization of the mucosal flora’ [29].

Interactions between microflora
and gut mucosa

Certain cell populations in the intestinal mucosa continu-
ously monitor the gut flora, recognize pathogens and
transfer signals to other immune cells that trigger inflam-
mation or help to avoid inadequate stimulation, by two
major host pattern recognition receptor (PRP) systems, the
Toll-like receptors (TLRs) and the nucleotide oligomeriza-
tion domain (NOD). Intestinal epithelial cells recognize
microbes and their products via TLRs and subsequently
activate the host immune system and protective mecha-
nisms that allow differentiation between commensal or
pathogenic microorganisms [5]. Dendritic cells have been
found to project long processes through the intestinal epi-
thelial cells to sample luminal microbial products, which
leads to direct dendritic cell–microbe contact via TLR
receptors [32]. Recognition of TLR ligands activates imma-
ture CD11c+ CD11b+ dendritic cells to secrete interleukin
(IL)-23, a dominant driver of inflammation in murine
models of colitis [33]. TLRs are expressed in myeloid cells
and the Golgi apparatus of intestinal epithelial cells,
playing a key role in the recognition of bacterial
lipopolysaccharides (LPS) and inducing the secretion of
inflammatory cytokines and activation of nuclear factor
(NF)-kB [34]. In IBD, a different expression pattern of TLRs
on intestinal epithelial cells has been cited, whereas TLR-4
expression is upregulated in CD [35].TLR-9, participating in
the recognition of bacterial DNA, has been implicated by
Rachmilewitz et al. as the site through which the anti-
inflammatory effect of probiotics is expressed, in experi-
mental colitis [36].

Another fact that contributes to our understanding of
the intriguing role of the microflora in the initiation and
perpetuation of IBD is the knowledge that mutations in
bacteria-recognizing proteins of intestinal (inter alia) cells
are associated with IBD. In particular, Hugot et al., Ogura
et al. and Hampe et al. have independently recognized the
NOD2 gene as strongly linked with CD [37–39]. NOD2,
otherwise known as caspase activating recruitment
domain 15 (CARD15), is an intracellular protein found in
monocytes, dendritic cells, Paneth cells and intestinal epi-
thelial cells that belongs to a superfamily of apoptotic pro-
tease activating factor 1 (Apaf-1)-related proteins, which
are correlated to signalling of apoptosis and activation of
the NF-kB pathway [40–42]. CARD15 is important in the
recognition of bacterial peptidoglycans mainly found in
Gram-negative bacteria through the binding of muramyl
dipeptide, leading to NF-kB activation [43], and in the
modulation of the secretion of defensins by Paneth cells
[44, 45]. Three main variants of NOD2/CARD15 have been
investigated and associated mainly with CD, whereas there
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is poor linkage to UC [45]. Recently, CARD15 mutations
have been identified as an independent risk factor for IBD
[46]. Many studies have focused on elucidating the mecha-
nisms that facilitate differentiation between harmless
commensal flora and pathogenic bacteria that help to
avoid inadequate stimulation of intestinal inflammation,
but an analytic presentation of these is beyond the scope
of this review.

The role of microflora in IBD

Clinical and experimental facts have led to the assumption
that bacteria in general and commensal microflora more
specifically play a key role in the onset and perpetuation of
IBD. Harper et al. in 1985 showed that reintroducing the
small bowel effluent of patients with CD treated with split
colostomy, rather than its sterile ultrafiltrate (which con-
tained no bacterial cells or other great particles), into the
‘hibernating’ colon induced inflammation of the area. Fur-
thermore, diversion of the faecal stream in CD reduces
inflammation of the gut and induces healing in the
excluded part of the bowel, whereas pouchitis does not
occur before ileostomy takedown [47]. Another observa-
tion which strongly supports this theory is the predomi-
nance of IBD lesions in areas of the highest bacterial
exposure, i.e. terminal ileum, colon and ileal pouches. Anti-
biotics have been proven of some value in treating IBD [13,
48, 49], even though there is evidence of actions other than
purely antimicrobial, as demonstrated by experimental
models of inflammation and ciprofloxacin [50].

The role of bacteria in IBD is strongly corroborated by
germ-free animal experiments. Genetically engineered
(transgenic and gene knock-out) rats exhibit chronic intes-
tinal inflammation under standard laboratory conditions,
but fail to do so when raised in a germ-free environment
[51–53], and chemically induced colitis with trinitroben-
zene sulphonic acid (TNBS) occurs in normal rats, but not
in rats previously treated with antibiotics [54]. Moreover,
adding different species of bacteria or different LPS parts
from the same strain in transgenic animals invokes dif-
ferent lymphocyte subpopulation activation [55]. These
findings suggest that not all bacteria trigger the same
antigenic stimulation, which implies that treatment with
probiotic strains depends primarily on the strain chosen.

The faecal, as well as the mucosal microbiota has been
found to differ between healthy subjects and IBD patients
[20]. Although results are conflicting about the dominant
species in each case, one may say that there are distinct
characteristics that differentiate the microbiota colonizing
the tract of patients with IBD in comparison with that of
healthy people. There is higher biodiversity of species in
healthy subjects [56], and dominant species comprise
about 90% of the total bacterial population, whereas in IBD
patients biodiversity is lower and there is a high percent-
age (almost 30%) of ‘unusual’ species [57]. It has also been

shown that healthy subjects are characterized by a higher
percentage of Firmicutes [58]. Conte et al. have recently
published their data comparing paediatric patients, which
support the accumulating evidence of microflora alter-
ations in IBD [59]. In healthy people, equilibrium exists
inside the gastrointestinal tract between protective and
harmful bacteria. The term dysbiosis has been introduced
to suggest that this equilibrium is broken in IBD, resulting
in chronic intestinal inflammation [60].

Human milk is the prototype and best synbiotic known.
It contains many biologically active components, amongst
which are proteins used to inhibit growth of pathogenic
bacteria and viruses such as lactoferrin and IgA [61], lactic
acid bacteria shown to be of endogenous origin and not
contaminants from the breast skin [62], oligosaccharides
with a clear prebiotic effect [63], antioxidants, epithelial
growth factors, cellular protective agents and enzymes
that degrade mediators of inflammation [64]. The effect of
human milk feeding in premature infants is clearly benefi-
cial, with many studies demonstrating its excellence, in
comparison with artificial formulas, in attenuating late-
onset sepsis, necrotizing enterocolitis, diarrhoea and
urinary tract infections [65–67].

Statistics tell us that IBD is increasing in Western coun-
tries, whereas in developing countries, where sanitation
levels are low, it is much less common. This phenomenon
includes not only IBD but also atopic diseases, as sup-
ported by studies that have detected differences in the
strains of the faeces from children with low prevalence of
atopic diseases from developing countries compared with
children with high prevalence of atopic diseases from
Western countries [68, 69]. The Hygiene Hypothesis, based
on the fact that lifestyle has changed from rural or semiru-
ral to purely industrial in Western countries, where interac-
tion with environmental bacteria is not favourable and
sometimes not desirable,poses the question:are infections
in early childhood the key to the formation of the intestinal
microflora and thus the modulation of the immune system
as an entity?

Pro-, pre- and synbiotics in the
treatment of IBD

The accumulating knowledge that microbiota modulates
gut physiology and immunological function in IBD,
described above, has led scientists to investigate the effi-
cacy of probiotics, prebiotics and synbiotics in the treat-
ment of IBD. This therapeutic strategy aims to restore the
balance of the gastrointestinal microflora in order to
reduce or prevent intestinal inflammation. Several micro-
bial strains, carbohydrate mixtures and their combinations
have been tested in experimental models and clinical
trials, and their results in the therapeutic manipulation of
bowel microbiota will be summarized in the following
paragraphs.

Microflora in IBD
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Probiotics
Probiotics are living microorganisms, able to survive
stomach acid and bile, maintain viability throughout
extended periods of storage, and safe for human con-
sumption, inducing beneficial results in the host [70].
Several mechanisms of action of probiotics relative to pre-
vention and treatment of IBD have been reported (Table 1),
such as antimicrobial activity and suppression of bacterial
growth, immunomodulation and initiation of an immune
response, enhancement of barrier activity, and suppression
of human T-cell proliferation [71–75]. Probiotics have also
been found to induce their effect by means of their DNA, as
shown by experiments using probiotic DNA [36,76,77] and
subcutaneous administration of probiotic DNA [78].
Derived originally from cultured food, especially dairy
products, this group includes Lactobacillus species, Bifido-
bacterium species, E. coli Nissle 1917 (a nonpathogenic

E. coli strain), Saccharomyces boulardii, C. butyricum, VSL#3
and Lactococcus lactis genetically engineered to secrete
IL-10. An interesting new approach to what we could call a
probiotic is helminths.

Lactobacillus
Lactobacilli have been used in several experimental
models and clinical trials to examine their effect on gut
pathophysiology. In experimental models, various Lacto-
bacillus strains evoke differential regulation of a number of
genes involved in essential physiological functions such as
immune responses [71, 79] and attenuate damage to the
colon by acetic acid and methotrexate [80]. Lactobacillus
casei inhibits production of IL-6 in LPS-stimulated large
intestinal lamina propria mononuclear cells and downregu-
lates nuclear translocation of NF-kB in SAMP1/Yit mice [81].
Several Lactobacillus strains upregulate intestinal MUC3
and MUC3 mRNA expression [82]. Lactobacillus rhamnosus
was found to induce cyclooxygenase-2 expression in
humanT84 colon epithelial cells [83] and Lactobacillus para-
casei ssp. paracasei B21060 suppresses human T-cell prolif-
eration [75]. Lactobacillus GG improves intestinal barrier
function by inhibition of apoptosis of intestinal epithelial
cells [84], prevents recurrence of colitis in HLA-B27 trans-
genic mice after antibiotic treatment [85] and attenuates
TNBS-induced colitis [86].Benefit has been shown with oral
administration of Lactobacillus salivarius spp. salivarius
CECT5713 in TNBS-induced colitis [87,88].Dextran sulphate
sodium (DSS)-induced colitis was attenuated by daily
administration of Lactobacillus crispatus,Lactobacillus plan-
tarum and Lactobacillus GG in various animal models
[89–91]. In IL-10 knock-out mice, Lactobacillus plantarum
299v [92] and Lactobacillus salivarius ssp. salivarius UCC118
[93] have been shown to reduce intestinal inflammation.

Despite its favourable results in experimental models
of IBD, Lactobacilli have not been proven to induce remis-
sion in either UC or CD patients in various clinical settings
[94–98].The only exception is an open trial in children with
CD [99]. In terms of maintenance of remission only one
study has shown prolongation of the relapse-free time in
UC patients by administration of Lactobacillus GG [94]. On
the other hand,no benefit has been shown in maintenance
of either medically or surgically induced remission in CD
[95, 96].

Bifidobacterium
Bifidobacterium infantis has been shown, in vitro and in
vivo, to suppress the growth of Ba. vulgatus [100], and to
attenuate intestinal inflammation in IL-10 knock-out mice
[93]. Various Bifidobacterium strains (breve, catenulatum,
longum and infantis) resulted in amelioration of intestinal
inflammation in DSS-induced colitis in mice [101, 102].
Bifidobacterium-fermented milk (Bi. breve, Bi. bifidum, Lac-
tobacillus acidophilus) administration in SAMP1/Yit mice
led to reduction of histological injury scores, ileal tissue
weight, myeloperoxidase activity, tissue contents of

Table 1
The effects of the probiotics on the mechanisms of intestinal

pathophysiology

Probiotics Effects on intestinal pathophysiology

Lactobacillus Inhibition of NF-kB nuclear translocation, blockage of IkB
degradation (L. reuteri)

Inhibition of production of IL-6 (L. casei)
Upregulation of intestinal MUC3 and MUC3 mRNA

expression
Inhibition of apoptosis of intestinal epithelial cells (L. GG)
Decreased translocation of commensal bacteria via the

mesenteric lymph nodes and liver (L. plantarum, L. GG)
Induction of COX-2 expression (L. rhamnosus)

Bifidobacterium Suppression of the growth of Bacteroeides vulgatus (B.
infantis)

Increase in IL-10 secreted by mesenteric lymph nodes
(Bifidobacterium-fermented milk)

Reduction of MPO activity, tissue contents of
immunoglobulin, TNF-a (Bifidobacterium-fermented milk)

Alteration of bacterial translocation and SCFA production
(B. infantis)

Inhibition of disorderd T-cell activation

Escherichia coli
Nissle 1917

Downregulation of the expansion of newly recruited T cells
into the mucosa

Intestinal inflammation regulation via TLR-2 and TLR-4
Restoration of disrupted epithelial barrier in the colonic

epithelial cell line T84
Saccharomyces

boulardii
Limitation of infiltration of T-helper 1 cells into the mucosa
NF-kB blocking and IL-8 downregulation

Clostridium
butiricum

Production of high levels of short chain fatty acids

VSL#3 Reduction of secretion of TNF-a and interferon-g
Improvement of the colonic barrier function
Inhibition of Salmonella Dublin invasion into T-84 cells
Convertion of linoleic acid into conjugated linoleic acid
Inhibition of TNF-a-induced IL-8 secretion,

mitogen-activated protein kinase activation and NF-kB
activation in HT-29 cells (CpG DNA)

Upregulation of mucin expression

Helminthes Skewing of the immune response towards Th2
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immunoglobulin, tumour necrosis factor (TNF)-a, and
increases in IL-10 secreted by mesenteric lymph nodes
[103]. Another recent study has demonstrated that mice
fed with skim milk containing 0.3% (w/w) Bi. bifidum did
not develop CD4(+) CD45RB(high) T-cell-mediated IBD com-
pared with mice fed with skim milk without the probiotic
[104]. In clinical trials, Bifidobacterium-fermented milk was
found to reduce the UC activity index and exacerbation of
symptoms compared with placebo [105, 106]. On the other
hand, Bifidobacterium-fermented milk used by Laake et al.
in an open trial with 10 patients suffering from active pou-
chitis demonstrated no benefit [107].

Escherichia coli Nissle 1917
The probiotic Nissle 1917 (EcN) is an E. coli strain that has
been used for decades in Central Europe for the treatment
and prevention of intestinal disorders. In experimental
conditions, E. coli Nissle 1917 downregulates the expan-
sion of newly recruited T cells into the mucosa and limits
intestinal inflammation via TLR-2 [108] and TLR-4 [109]
pathways. DSS-induced colitis in mice is prevented by
administration of soluble bacterial antigens from this non-
pathogenic E. coli strain [110]. Recently, Zyrek et al. have
shown in vitro that EcN restores the disrupted epithelial
barrier in the colonic epithelial cell line T84 [111]. In two
clinical trials, E. coli Nissle 1917 was found equivalent to
mesalamine at attaining [112], as well as maintaining
remission of UC for 12 months [113]. In maintenance of
remission of CD, no difference was found in remission
between E. coli Nissle 1917 and placebo [114], but it should
be noted that there is strong evidence for the effect of
E. coli Nissle 1917 in the maintenance of remission of UC
[115, 116].

Saccharomyces boulardii
Saccharomyces boulardii is a nonpathogenic yeast used
for treatment of diarrhoea. This yeast was recently shown
to attenuate the migration of T-helper 1 cells into the
mucosa, altering the cascade of cytokines [117] and also to
produce a low-molecular-weight factor blocking NF-kB
activation and IL-8 expression [118]. Combination of
S. boulardii with mesalamine was found to induce a signifi-
cant prolongation of CD remission [119] and to have a
successful outcome in patients with active UC [120].

Clostridium butyricum
Clostridium butyricum, an enterobacterium, produces high
levels of short chain fatty acids that have been reported to
be important in intestinal physiology. Two studies have
been reported in rodents, to examine the effect of this
microorganism. In the first, a C. butyricum derivative was
tested in a DSS-colitis model successfully [121], while
Okamoto et al. studied the M588 strain and demonstrated
that it attenuated intestinal inflammation and suggested
that oral administration of C. butyricum may be useful
instead of butyrate enema in the treatment of UC [122].

Vsl#3
VSL#3 is a probiotic preparation consisting of four strains
of lactobacilli (acidophilus, bulgaricus, casei, plantarum),
three strains of bifidobacteria (breve, infantis, longum), and
Streptococcus thermophilus that are normal components of
the human gut microflora. Administration of this mixture
to IL-10 knockout mice reduces intestinal inflammation
and secretion of TNF-a and interferon (IFN)-g from the
mucosa and improves the colonic barrier function [123]. It
has been shown to inhibit Salmonella Dublin invasion into
T-84 cells both in vitro and in vivo [124] and to convert
linoleic acid into the anti-inflammatory conjugated linoleic
acid [125]. Non-methylated genomic DNA (CpG) extracted
from VSL#3 inhibits TNF-a-induced IL-8 secretion,
mitogen-activated protein kinase activation and NF-kB
activation in HT-29 cells, and attenuates intestinal inflam-
mation in murine models of colitis through the TLR-9
receptor [36, 76].This mixture has recently demonstrated a
role in potentiating mucin expression in experimental
models [126]. However, in a mice model of DSS colitis the
modification of microflora by supplementation with the
VSL#3 did not repair the colonic barrier breakdown and
did not heal chronic DSS-induced colitis [127].

Three double-blind randomized controlled trials evalu-
ating the use of VSL#3 in remission of pouchitis have
shown that daily administration of VSL#3 after induction of
remission by antibiotics [128, 129] or immediately postsur-
gically [12] prevented relapse of chronic pouchitis com-
pared with placebo groups. On the other hand, Shen et al.
found no efficacy of VSL#3 treatment in patients with
antibiotic-dependent pouchitis [130]. Data from other
clinical trials suggest that VSL#3 is effective in the treat-
ment and maintenance of active UC, without adverse
effects [131, 132]. The use of VSL#3 for the treatment of
IBD-related arthralgia has shown promising features in
experimental models and preliminary clinical studies
[133].Despite contradictory data from a number of studies,
there is reasonable evidence for the effect of VSL#3 in pre-
venting the recurrence of pouchitis [115, 116, 134].

Genetically engineered Lactococcus lactis
Lactococcus lactis is a food-grade bacterium, known from
cheese production, which can be genetically engineered
to constantly secrete satisfactory amounts of bioactive
cytokines [135]. Transgenic Lactococcus lactis, modified to
secrete active IL-10, has been used with signs of inflamma-
tion attenuation in two murine models of colitis by Steidler
and his group [136]. This paper sets the basis for a new
rationale of intervention to the microflora in IBD. To
examine the potential of using pathogen-derived immu-
nomodulating molecules in vivo as novel therapeutics for
IBD, Foligne et al. used Yersinia LcrV Protein-secreting Lac-
tococcus lactis in two murine models of colitis. Oral admin-
istration proved to be very effective in preventing and
treating acute colitis in both models [137]. However, the
use of transgenic bacteria in clinical trials should be

Microflora in IBD
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carefully planned, as containment of the modified micro-
organism within the host and avoidance of unwanted
mutations must be ensured, to prevent the emergence of
potentially dangerous novel microorganism.

Helminths
The ‘hygiene hypothesis’ is supported by the fact that IBD
is much less common in countries with poor sanitation
and low hygiene levels, where helminth infections are
common, in comparison with Western countries [138]. It
has thus been assumed that helminths may lead to the
prevention of IBD, by some unknown mechanism, but
there are data showing that they move the antigenic
response from Th1 to Th2 [139, 140]. Helminths can reverse
intestinal inflammation in animal models of IBD, and
changes in the cytokine profile of the infected mice have
been observed [141]. Lamina propria mononuclear cells
from mice infected with helminths were found to produce
less IL-12(p40) and IFN-g and more IL-4, IL-13, IL-10 and
transforming growth factor-beta compared with naive
mice [142]. The use of helminths, such as Trichuris suis, that
are not human parasites for the treatment of IBD patients
in clinical trials may sound odd, but the facts are: coloniza-
tion with their eggs is self-limiting, they do not replicate in
the host, there is no direct transmission and it is convenient
to produce eggs [141] – the ideal colonization of the gut
without invading the host. Starting from animal studies, T.
suis was used by Summers et al. in two trials in the Univer-
sity of Iowa, one in UC (randomized, double-blind, placebo-
controlled) [143] and one in CD (open label trial) [144]
patients, showing efficacy in both studies. Evidence from
this area looks promising, but further clinical trials with
helminth material are necessary to confirm these data.

Prebiotics
Prebiotics are indigestible carbohydrates, which stimulate
the growth of particular species of the microflora of the
host, resulting in an ameliorated enteric function (Table 2).
These nondigestible food constituents act primarily by
increasing the population of certain bacteria and thus
quantitatively altering the microflora [70]. When reaching
the colon, they are fermented by anaerobic bacteria, pro-
ducing short-chain fatty acids (SCFA) and gas (CO2 and H2).
As a result, intraluminal pH drops [145], favouring the
increase of Bifidobacteria, Lactobacilli and nonpathogenic
E. coli and decreasing Bacteroidaceae. The fermentation of
carbohydrates also leads to the production of acetic, pro-
pionic and butyrate acids that are involved in several
colon-specific and systemic pathways [146]. Acetate is
used as cell fuel and propionic acid is involved in choles-
terol synthesis, amongst others. Of these, butyrate is of
great importance to the metabolism of the colonocyte
[147]. It has also been proven that butyrate exerts anti-
inflammatory action, by in vitro reducing the expression of
TNF-a-related cytokines and upregulating IL-10 in mice
[148], possibly by inhibition of the nuclear translocation of

NF-kB [149]. Butyrate enemas have been used with success
in UC [150–152], but the need for continuous administra-
tion limits its use. The most commonly used prebiotics in
experimental models and clinical trials are lactulose, lacto-
sucrose, oligofructose and inulin, psyllium, germinated
barley foodstuff, fructo- and milk-oligosaccharides.

Lactulose
Lactulose attenuates inflammation in IL-10 knockout mice
[153]. It also reduces myeloperoxidase activity, TNF-a and
leukotriene B production and increases Bifidobacteria and
Lactobacilli, when administered for 2 weeks prior to induc-
tion of TNBS colitis in mice [154]. It has also demonstrated
a dose-dependent beneficial effect in DSS-induced colitis
[155]. In a pilot study oral lactulose had no beneficial
effects in IBD patients as regards clinical activity, endo-
scopic score or immunohistochemical parameters, but
significantly (P = 0.04) improved the quality of life [156].
Nevertheless, its side-effects (mainly diarrhoea) limit its use
in clinical trials.

Lactosucrose
Lactosucrose is a water-soluble fibre that is shown to
increase the percentage of Bifidobacteria and the total
amount of bacteria in healthy subjects, but with no effect
on SCFA [157]. In a study by Teramoto et al., administration
of lactosucrose for 2 weeks in IBD patients led to an
increase in Bifidobacteria and a decrease in Bacteroi-
daceae [158], but despite these favourable effects, lactosu-
crose has not been further evaluated.

Oligofructose and inulin
These are both composed of multiple saccharide units and
have similar functions in the bowel that stimulate growth
and activity of Lactobacilli and Bifidobacteria [159]. Their

Table 2
The effects of the prebiotics on the mechanisms of intestinal

pathophysiology

Prebiotics Effects on intestinal pathophysiology

Common effects Reduction of intraluminal pH
Favouring of Bifidobacteria and

Lactobacilli vs. Bacteroidaceae
Short-chain fatty acid (SCFA) production
Regulate colonic mucosa physiology via

the production of SCFA
Lactulose Reduction of MPO activity

Production of TNF-a and leukotriene B

Germinated barley foodstuff Decrease in serum IL-8 and a1-acid
glycoprotein

Fructo-oligosaccharides Upregulation of IL-10 expression in
dendritic cells

Goat’s milk oligosaccharides Decrease the colonic MPO activity,
increase MUC-3
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combination prevents development of colitis in HLA-B27
transgenic mice [160]. Inulin attenuates inflammation and
reduces markers of inflammation in DSS-induced colitis,
leading also to the increase of lactic acid bacteria and pH
drop [161, 162]. Licht et al. [163] have reported that oligof-
ructose and inulin feeding (separately) to rats led to a
greater percentage of lactic acid bacteria and higher
butyrate levels. Inulin and oligofructose (OF-IN), given
together, had similar results in healthy humans [159]. In a
clinical trial, patients with a relapse of mild to moderate UC
received mesalazine in combination with oligofructose-
enriched inulin or placebo. Oligofructose-enriched inulin
was well tolerated and associated with an early reduction
in faecal calprotectin [156].

Psyllium (Ispaghula husk, Plantago ovata)
This is a water-soluble fibre, formerly investigated for its
hypocholesterolaemic effect [164]. Dietary fibres amelio-
rated colonic damage in HLA-B27 transgenic rats via the
increased production of SCFA and the synergistic inhibi-
tion of proinflammatory mediator production [165].
Supplementary diets rich in fibres significantly attenuate
clinical symptoms compared with placebo in UC patients,
as reported by a small number of studies [166–168]. A clini-
cal trial in UC patients, in comparison with sulfasalazine,
showed no difference in remission period rates, thus
accrediting psyllium as an alternative treatment to sul-
fasalazine for maintaining remission [169]. Psyllium was
also shown, in the previous study, to raise faecal butyrate
levels.

Germinated barley foodstuff
Germinated barley foodstuff (GBF) is derived from the
aleuronic layer and scutellum fractions of germinated
barley, and has two characteristics: large water-holding
capacity and richness in glutamine. It is composed of a
fibre fraction and a protein-rich (glutamine) fraction [170].
In an experimental model of colitis, GBF preventive treat-
ment showed a beneficial effect on the microflora [171]
with raised butyrate levels [172], a decrease in serum IL-8
and a1-acid glycoprotein [173] and suppression of the infil-
tration of the mucosa by mast cells [174], leading to attenu-
ation of colitis. When used therapeutically by the same
group, it demonstrated an equal anti-inflammatory
efficacy to that of sulfasalazine, with better handling of
diarrhoea [173]. In a multicentred open label trial, oral
administration of GBF along with standard treatment in 21
patients with mild to moderate UC for 24 weeks led to an
important decrease in clinical activity index, compared
with controls receiving standard treatment alone [175].
The same group used GBF in another study [168], to dem-
onstrate the efficacy of GBF in maintaining remission of UC
along with standard treatment, with lower recurrence rates
and lower steroid dosage in the GBF group.

Fructo- and milk-oligosaccharides
Fructo-oligosaccharides have been found to attenuate
TNBS-induced colitis in rats, promoting the growth of ben-
eficial lactic acid bacteria and raising butyrate levels [176,
177], but not DSS-colitis in mice [178]. The combination of
fructo-oligosaccharides and inulin, combining the benefi-
cial effect of the first in the modulation of microflora [179]
and of the second in raising butyrate levels [180, 181], has
been reported to attenuate macroscopic and histological
inflammation in HLA-B27 transgenic rats [160]. Goat’s milk
oligosaccharides fed to DSS-colitis mice had a beneficial
effect in maintenance of their body weight, with decreased
colonic myeloperoxidase activity, milder clinical symptoms
and increased MUC-3 compared with control [182] and
TNBS-colitis rats [183]. In a recent study Vos et al. have
shown that dietary supplementation of oligosaccharides
enhanced Th1-dependent vaccination responses in mice
[184]. In an open label study by Lindsay et al. in 15 CD
patients, fructo-oligosaccharides were shown to raise
levels of IL-10 expression in dendritic cells, with an increase
of Bifidobacteria [185].

Synbiotics
Synbiotics are combined products of pro- and prebiotics
[70]. The above-mentioned beneficial effects of both pro-
biotics and prebiotics in experimental models and clinical
trials have led scientists to the thought of combining them
in a novel therapeutic scheme called synbiotic. As shown
above, every probiotic and prebiotic has distinct features,
acting in its own way in modulating the microflora, and it is
thus deduced that there are many combinations to be
studied. Moreover, the complex organization and function
of the intestinal microflora does not ensure that mixtures
that we expect to act synergistically, based on the fact that
each component of the mixture has a specific role, will do
so. Nevertheless, it is necessary to study these treatment
options, as the combination of treatments will hopefully
lead to more flexible therapeutic schemes, improving
compliance of patients and decreasing costs. Roller et al.
have demonstrated suppression of colonic carcinogenesis
by use of a combination of oligofructose-enriched inulin,
Lactobacillus and Bifidobacterium, while the same mixture
stimulated secretion of IgA and IL-10 by the caecum [186].
One paper has showed that a combination of Bi. breve,
Lactobacillus casei and galacto-oligosaccharides substan-
tially improved bowel function in a girl with short bowel
syndrome [187]. Furrie et al., in a randomized double-blind
controlled trial of 18 UC patients, used a combination of Bi.
longum, inulin and oligofructose and demonstrated that
this mixture reduces sigmoidoscopy and rectal biopsy
inflammation scores, with a concurrent reduction of TNF-a
and IL-1b levels [188]. Synbiotics with their combinations
offer a large area for clinical trials and potential treatments
in IBD and a new field for studies of their effects on the
pathogenic mechanisms in intestinal inflammation.
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Conclusions

During recent decades probiotics and prebiotics have
been used in a large number of experimental models of
colitis and clinical trials. Experimental studies in vitro and
in vivo have provided good evidence that bacterial and
bacterial components are implicated in the pathogenic
mechanisms of gut pathophysiology and that intestinal
microflora play a pivotal role in the pathogenesis of IBD.
These studies have helped us to identify the changes in the
microbiota in the mucosal and luminal environment of
bowel and to understand the interaction of these microor-
ganisms with the underlying mucosal immune system in
gut. However, a better understanding of this ecosystem is
required in order to determine which bacterial strain or
prebiotic would be the ideal treatment for a given bowel
disorder.

On the other hand, clinical trials have given conflicting
results thus far. It is necessary to cite the more profound
clinical effect of these treatments in UC remission and
prevention of pouchitis in CD, whereas benefits are
limited in CD and results must be gathered as for non-
gastrointestinal manifestations of IBD in general. These
agents, introduced as ‘pharmabiotics’ by Shanahan [189],
have exhibited lack of toxicity so far, whereas they seem
to be a good solution in patients who are reluctant to
take medication (a very important factor, especially in
conditions such as IBD, where treatment is elongated and
difficult to cope with); probiotics and prebiotics are
‘nature products’, not drugs.

Pro- and prebiotics have demonstrated their beneficial
impact in healthy subjects, both experimentally and clini-
cally, to an equal, and in our opinion a greater extent than
in IBD patients. Results from clinical studies have demon-
strated that these therapies are equivalent to those tradi-
tionally used, and, in a few cases, better at maintaining
remission induced by traditional therapies [94, 106, 134].
The use of pro- and prebiotics should be studied in healthy
populations starting from childhood, in order to evaluate
their potential as preventive means, apart from IBD
therapy. Large cohort studies could be of use in this case.
Of course, as in any long-term treatment, the safety of con-
tinuous administration of pro- and prebiotics must be first
confirmed in experimental models, to avoid unexpected
and thus far undemonstrated detrimental effects from this
constant antigenic stimulation.

Pro-, pre- and synbiotics now appear to have a pivotal
role in the prevention and management of various gas-
trointestinal disorders that is totally dependent on the
combination of bacteria used and the type and stage of
the treated bowel disease.These ‘pharmabiotics’constitute
a heterogeneous group with different properties and bio-
logical effects on gut physiology and pathophysiology. In
addition, similar bacteria do not share similar therapeutic
activities and in vitro their properties do not always predis-
pose their effects on the human intestinal physiology as a

part of the microenvironment of microflora. Further work
with well-designed randomized control clinical trials is
necessary in order to understand the undoubted role of
these agents in the management of gut physiology in
health and disease.
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